Learning Entity and Relation Embeddings for Knowledge Graph Completion
نویسندگان
چکیده
Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. In fact, an entity may have multiple aspects and various relations may focus on different aspects of entities, which makes a common space insufficient for modeling. In this paper, we propose TransR to build entity and relation embeddings in separate entity space and relation spaces. Afterwards, we learn embeddings by first projecting entities from entity space to corresponding relation space and then building translations between projected entities. In experiments, we evaluate our models on three tasks including link prediction, triple classification and relational fact extraction. Experimental results show significant and consistent improvements compared to stateof-the-art baselines including TransE and TransH. The source code of this paper can be obtained from https: //github.com/mrlyk423/relation extraction.
منابع مشابه
Joint Representation Learning of Text and Knowledge for Knowledge Graph Completion
Joint representation learning of text and knowledge within a unified semantic space enables us to perform knowledge graph completion more accurately. In this work, we propose a novel framework to embed words, entities and relations into the same continuous vector space. In this model, both entity and relation embeddings are learned by taking knowledge graph and plain text into consideration. In...
متن کاملEmbedding Knowledge Graphs Based on Transitivity and Antisymmetry of Rules
Representation learning of knowledge graphs encodes entities and relation types into a continuous low-dimensional vector space, learns embeddings of entities and relation types. Most existing methods only concentrate on knowledge triples, ignoring logic rules which contain rich background knowledge. Although there has been some work aiming at leveraging both knowledge triples and logic rules, t...
متن کاملKnowledge Graph Completion via Complex Tensor Factorization
In statistical relational learning, knowledge graph completion deals with automatically understanding the structure of large knowledge graphs—labeled directed graphs— and predicting missing relationships—labeled edges. State-of-the-art embedding models propose different trade-offs between modeling expressiveness, and time and space complexity. We reconcile both expressiveness and complexity thr...
متن کاملTopic-Based Embeddings for Learning from Large Knowledge Graphs
We present a scalable probabilistic framework for learning from multi-relational data, given in form of entity-relation-entity triplets, with a potentially massive number of entities and relations (e.g., in multirelational networks, knowledge bases, etc.). We define each triplet via a relation-specific bilinear function of the embeddings of entities associated with it (these embeddings correspo...
متن کاملFast Linear Model for Knowledge Graph Embeddings
This paper shows that a simple baseline based on a Bag-of-Words (BoW) representation learns surprisingly good knowledge graph embeddings. By casting knowledge base completion and question answering as supervised classification problems, we observe that modeling co-occurences of entities and relations leads to state-of-the-art performance with a training time of a few minutes using the open sour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015